3.1.89 \(\int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^4(c+d x) \, dx\) [89]

Optimal. Leaf size=164 \[ \frac {a^{3/2} (11 A+14 B) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{8 d}+\frac {a^2 (11 A+14 B) \tan (c+d x)}{8 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 (7 A+6 B) \sec (c+d x) \tan (c+d x)}{12 d \sqrt {a+a \cos (c+d x)}}+\frac {a A \sqrt {a+a \cos (c+d x)} \sec ^2(c+d x) \tan (c+d x)}{3 d} \]

[Out]

1/8*a^(3/2)*(11*A+14*B)*arctanh(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/d+1/8*a^2*(11*A+14*B)*tan(d*x+c)/d/
(a+a*cos(d*x+c))^(1/2)+1/12*a^2*(7*A+6*B)*sec(d*x+c)*tan(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+1/3*a*A*sec(d*x+c)^2*
(a+a*cos(d*x+c))^(1/2)*tan(d*x+c)/d

________________________________________________________________________________________

Rubi [A]
time = 0.27, antiderivative size = 164, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {3054, 3059, 2851, 2852, 212} \begin {gather*} \frac {a^{3/2} (11 A+14 B) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{8 d}+\frac {a^2 (11 A+14 B) \tan (c+d x)}{8 d \sqrt {a \cos (c+d x)+a}}+\frac {a^2 (7 A+6 B) \tan (c+d x) \sec (c+d x)}{12 d \sqrt {a \cos (c+d x)+a}}+\frac {a A \tan (c+d x) \sec ^2(c+d x) \sqrt {a \cos (c+d x)+a}}{3 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x])*Sec[c + d*x]^4,x]

[Out]

(a^(3/2)*(11*A + 14*B)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(8*d) + (a^2*(11*A + 14*B)*Ta
n[c + d*x])/(8*d*Sqrt[a + a*Cos[c + d*x]]) + (a^2*(7*A + 6*B)*Sec[c + d*x]*Tan[c + d*x])/(12*d*Sqrt[a + a*Cos[
c + d*x]]) + (a*A*Sqrt[a + a*Cos[c + d*x]]*Sec[c + d*x]^2*Tan[c + d*x])/(3*d)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2851

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(b*c - a*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x]
+ Dist[(2*n + 3)*((b*c - a*d)/(2*b*(n + 1)*(c^2 - d^2))), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n
 + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &
& LtQ[n, -1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]

Rule 2852

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[-2*(
b/f), Subst[Int[1/(b*c + a*d - d*x^2), x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3054

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d
*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Dist[b/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x
])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n
 + 1) - B*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a
*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*
n] || EqQ[c, 0])

Rule 3059

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(B*c - A*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n
 + 1)*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]])), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(2*d*(n +
1)*(b*c + a*d)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1]

Rubi steps

\begin {align*} \int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^4(c+d x) \, dx &=\frac {a A \sqrt {a+a \cos (c+d x)} \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac {1}{3} \int \sqrt {a+a \cos (c+d x)} \left (\frac {1}{2} a (7 A+6 B)+\frac {3}{2} a (A+2 B) \cos (c+d x)\right ) \sec ^3(c+d x) \, dx\\ &=\frac {a^2 (7 A+6 B) \sec (c+d x) \tan (c+d x)}{12 d \sqrt {a+a \cos (c+d x)}}+\frac {a A \sqrt {a+a \cos (c+d x)} \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac {1}{8} (a (11 A+14 B)) \int \sqrt {a+a \cos (c+d x)} \sec ^2(c+d x) \, dx\\ &=\frac {a^2 (11 A+14 B) \tan (c+d x)}{8 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 (7 A+6 B) \sec (c+d x) \tan (c+d x)}{12 d \sqrt {a+a \cos (c+d x)}}+\frac {a A \sqrt {a+a \cos (c+d x)} \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac {1}{16} (a (11 A+14 B)) \int \sqrt {a+a \cos (c+d x)} \sec (c+d x) \, dx\\ &=\frac {a^2 (11 A+14 B) \tan (c+d x)}{8 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 (7 A+6 B) \sec (c+d x) \tan (c+d x)}{12 d \sqrt {a+a \cos (c+d x)}}+\frac {a A \sqrt {a+a \cos (c+d x)} \sec ^2(c+d x) \tan (c+d x)}{3 d}-\frac {\left (a^2 (11 A+14 B)\right ) \text {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{8 d}\\ &=\frac {a^{3/2} (11 A+14 B) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{8 d}+\frac {a^2 (11 A+14 B) \tan (c+d x)}{8 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 (7 A+6 B) \sec (c+d x) \tan (c+d x)}{12 d \sqrt {a+a \cos (c+d x)}}+\frac {a A \sqrt {a+a \cos (c+d x)} \sec ^2(c+d x) \tan (c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.99, size = 132, normalized size = 0.80 \begin {gather*} \frac {a \sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \sec ^3(c+d x) \left (3 \sqrt {2} (11 A+14 B) \tanh ^{-1}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^3(c+d x)+(7 (7 A+6 B)+4 (11 A+6 B) \cos (c+d x)+(33 A+42 B) \cos (2 (c+d x))) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{48 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x])*Sec[c + d*x]^4,x]

[Out]

(a*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*Sec[c + d*x]^3*(3*Sqrt[2]*(11*A + 14*B)*ArcTanh[Sqrt[2]*Sin[(c
+ d*x)/2]]*Cos[c + d*x]^3 + (7*(7*A + 6*B) + 4*(11*A + 6*B)*Cos[c + d*x] + (33*A + 42*B)*Cos[2*(c + d*x)])*Sin
[(c + d*x)/2]))/(48*d)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(1325\) vs. \(2(144)=288\).
time = 0.41, size = 1326, normalized size = 8.09

method result size
default \(\text {Expression too large to display}\) \(1326\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^4,x,method=_RETURNVERBOSE)

[Out]

1/6*a^(1/2)*cos(1/2*d*x+1/2*c)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)*(-24*a*(11*A*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2)
)*(a*2^(1/2)*cos(1/2*d*x+1/2*c)-a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)-2*a))+11*A*ln(4/(2*cos(1/2*d*x+
1/2*c)+2^(1/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)+a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+2*a))+14*B*ln(-4/
(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)-a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)-2*
a))+14*B*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)+a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)
^2*a)^(1/2)+2*a)))*sin(1/2*d*x+1/2*c)^6+12*(22*A*a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+28*B*2^(1/2)*(
sin(1/2*d*x+1/2*c)^2*a)^(1/2)*a^(1/2)+33*A*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)-
a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)-2*a))*a+33*A*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a*2^(1/2)*cos
(1/2*d*x+1/2*c)+a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+2*a))*a+42*B*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2
))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)-a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)-2*a))*a+42*B*ln(4/(2*cos(1/2*d
*x+1/2*c)+2^(1/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)+a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+2*a))*a)*sin(1
/2*d*x+1/2*c)^4+(-352*A*a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)-198*A*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2
))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)+a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+2*a))*a-198*A*ln(-4/(2*cos(1/2
*d*x+1/2*c)-2^(1/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)-a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)-2*a))*a-384*
B*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)*a^(1/2)-252*B*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a*2^(1/2)*cos(1/2*
d*x+1/2*c)+a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+2*a))*a-252*B*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(
a*2^(1/2)*cos(1/2*d*x+1/2*c)-a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)-2*a))*a)*sin(1/2*d*x+1/2*c)^2+126*
A*a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+33*A*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a*2^(1/2)*cos(1/2*d
*x+1/2*c)+a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+2*a))*a+33*A*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(a*
2^(1/2)*cos(1/2*d*x+1/2*c)-a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)-2*a))*a+108*B*2^(1/2)*(sin(1/2*d*x+1
/2*c)^2*a)^(1/2)*a^(1/2)+42*B*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*c)+a^(1/2)*2^(1/2
)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+2*a))*a+42*B*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(a*2^(1/2)*cos(1/2*d*x+1/2*
c)-a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)-2*a))*a)/(2*cos(1/2*d*x+1/2*c)+2^(1/2))^3/(2*cos(1/2*d*x+1/2
*c)-2^(1/2))^3/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 7567 vs. \(2 (144) = 288\).
time = 153.57, size = 7567, normalized size = 46.14 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^4,x, algorithm="maxima")

[Out]

-1/96*((774*sqrt(2)*a*cos(7/2*d*x + 7/2*c)*sin(2*d*x + 2*c) + 162*sqrt(2)*a*cos(5/2*d*x + 5/2*c)*sin(2*d*x + 2
*c) + (14*sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 90*sqrt(2)*a*sin(1/2*d*x + 1/2*c) - 33*a*log(2*cos(1/2*d*x + 1/2*c)
^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 33*a*lo
g(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x
 + 1/2*c) + 2) - 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c)
 + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt
(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*cos(6*d*x + 6*c)^2 + 9*(14*sqrt(2)*a*sin(3/2*d
*x + 3/2*c) + 90*sqrt(2)*a*sin(1/2*d*x + 1/2*c) - 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2
 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 +
2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 33*a*log(2*c
os(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/
2*c) + 2) + 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*
sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*cos(4*d*x + 4*c)^2 + 9*(14*sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 90*sqrt(2)*a*si
n(1/2*d*x + 1/2*c) - 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/
2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*
sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin
(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 33*a*log(2*cos(1/
2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c)
+ 2))*cos(2*d*x + 2*c)^2 + (14*sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 90*sqrt(2)*a*sin(1/2*d*x + 1/2*c) - 33*a*log(2
*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x +
1/2*c) + 2) + 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) -
2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)
*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*
x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*sin(6*d*x + 6*c)^2 + 9*(1
4*sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 90*sqrt(2)*a*sin(1/2*d*x + 1/2*c) - 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*s
in(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 33*a*log(2*cos(
1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c
) + 2) - 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqr
t(2)*sin(1/2*d*x + 1/2*c) + 2) + 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(
1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*sin(4*d*x + 4*c)^2 + 9*(14*sqrt(2)*a*sin(3/2*d*x + 3/2
*c) + 90*sqrt(2)*a*sin(1/2*d*x + 1/2*c) - 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqr
t(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/
2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 33*a*log(2*cos(1/2*d
*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2
) + 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*
sin(1/2*d*x + 1/2*c) + 2))*sin(2*d*x + 2*c)^2 + 44*sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 132*sqrt(2)*a*sin(1/2*d*x
+ 1/2*c) + 14*(sqrt(2)*a*sin(6*d*x + 6*c) + 3*sqrt(2)*a*sin(4*d*x + 4*c) + 3*sqrt(2)*a*sin(2*d*x + 2*c))*cos(1
5/2*d*x + 15/2*c) + 90*(sqrt(2)*a*sin(6*d*x + 6*c) + 3*sqrt(2)*a*sin(4*d*x + 4*c) + 3*sqrt(2)*a*sin(2*d*x + 2*
c))*cos(13/2*d*x + 13/2*c) - 2*(87*sqrt(2)*a*sin(11/2*d*x + 11/2*c) + 157*sqrt(2)*a*sin(9/2*d*x + 9/2*c) + 129
*sqrt(2)*a*sin(7/2*d*x + 7/2*c) + 27*sqrt(2)*a*sin(5/2*d*x + 5/2*c) - 29*sqrt(2)*a*sin(3/2*d*x + 3/2*c) - 111*
sqrt(2)*a*sin(1/2*d*x + 1/2*c) - 3*(14*sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 90*sqrt(2)*a*sin(1/2*d*x + 1/2*c) - 33
*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/
2*d*x + 1/2*c) + 2) + 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1
/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2
*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 33*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*si
n(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + ...

________________________________________________________________________________________

Fricas [A]
time = 0.40, size = 202, normalized size = 1.23 \begin {gather*} \frac {3 \, {\left ({\left (11 \, A + 14 \, B\right )} a \cos \left (d x + c\right )^{4} + {\left (11 \, A + 14 \, B\right )} a \cos \left (d x + c\right )^{3}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, {\left (3 \, {\left (11 \, A + 14 \, B\right )} a \cos \left (d x + c\right )^{2} + 2 \, {\left (11 \, A + 6 \, B\right )} a \cos \left (d x + c\right ) + 8 \, A a\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{96 \, {\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^4,x, algorithm="fricas")

[Out]

1/96*(3*((11*A + 14*B)*a*cos(d*x + c)^4 + (11*A + 14*B)*a*cos(d*x + c)^3)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*
cos(d*x + c)^2 - 4*sqrt(a*cos(d*x + c) + a)*sqrt(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + c
os(d*x + c)^2)) + 4*(3*(11*A + 14*B)*a*cos(d*x + c)^2 + 2*(11*A + 6*B)*a*cos(d*x + c) + 8*A*a)*sqrt(a*cos(d*x
+ c) + a)*sin(d*x + c))/(d*cos(d*x + c)^4 + d*cos(d*x + c)^3)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)**4,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]
time = 0.58, size = 252, normalized size = 1.54 \begin {gather*} -\frac {\sqrt {2} {\left (3 \, \sqrt {2} {\left (11 \, A a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + 14 \, B a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )\right )} \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right ) + \frac {4 \, {\left (132 \, A a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 168 \, B a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 176 \, A a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 192 \, B a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 63 \, A a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 54 \, B a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{3}}\right )} \sqrt {a}}{96 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^4,x, algorithm="giac")

[Out]

-1/96*sqrt(2)*(3*sqrt(2)*(11*A*a*sgn(cos(1/2*d*x + 1/2*c)) + 14*B*a*sgn(cos(1/2*d*x + 1/2*c)))*log(abs(-2*sqrt
(2) + 4*sin(1/2*d*x + 1/2*c))/abs(2*sqrt(2) + 4*sin(1/2*d*x + 1/2*c))) + 4*(132*A*a*sgn(cos(1/2*d*x + 1/2*c))*
sin(1/2*d*x + 1/2*c)^5 + 168*B*a*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c)^5 - 176*A*a*sgn(cos(1/2*d*x +
1/2*c))*sin(1/2*d*x + 1/2*c)^3 - 192*B*a*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c)^3 + 63*A*a*sgn(cos(1/2
*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c) + 54*B*a*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c))/(2*sin(1/2*d*x +
1/2*c)^2 - 1)^3)*sqrt(a)/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\left (A+B\,\cos \left (c+d\,x\right )\right )\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}}{{\cos \left (c+d\,x\right )}^4} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(3/2))/cos(c + d*x)^4,x)

[Out]

int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(3/2))/cos(c + d*x)^4, x)

________________________________________________________________________________________